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Abstract

We present a domain decomposition approach for the computation of the electromagnetic field within periodic struc-
tures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent
boundary conditions are approximated by the perfectly matched layer method (PML). An adaptive strategy to determine
optimal PML parameters is developed. Thus we can treat Wood anomalies appearing in periodic structures.

We focus on the application to typical EUV lithography line masks. Light propagation within the multilayer stack of
the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the sim-
ulation of next generation lithography masks on a standard personal computer.
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1. Introduction

The fabrication of semiconductor chips is based on an optical projection system, which transfers the pattern
from the photolithography mask onto the chip. State of the art photolithography tools are operated with light
of a vacuum wavelength k � 193 nm [5]. Currently tools are developed that employ extreme ultraviolet light
(EUV) with a vacuum wavelength k � 13 nm. At this wavelength there are no materials available that are
transparent, hence mask and lenses have to be replaced by mirrors, which are formed of multilayer stacks.
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A typical section of an EUV lithography line mask is depicted in Fig. 1. The light is incident from above and is
reflected back. The line on the mask absorbs some light, thus casting a shadow.

The line mask is invariant in x3 direction and periodic with period a in x1 direction. The multilayer stack
may consist of more than 100 layers; the thickness of each layer is about a quarter of a wavelength. The inci-
dent wave is twofold oblique – oblique with respect to the mask plane and oblique with respect to the multi-
layer structure. The polarization of the incident field is arbitrary.

In Section 2 we introduce the mathematical setting of the arising scattering problem and derive the radiat-
ing boundary condition in terms of Fourier modes. Further, we show that the exterior Dirichlet as well as
Neumann boundary value problem is ill-posed in the presence of so called Wood anomalies [19].

To deal with the large computational domains we propose a domain decomposition method, described in
Section 5. The multilayer sub-domain is treated semi-analytically, c.f. Section 2.4, whereas the other sub-
domains are discretized by the finite element method using the PML method to approximate transparent
boundary conditions. The PML method goes back to Bérenger [2]; convergence of the method was proven
in [16,17] and [15] for non-periodic problems. As is shown in Section 3 the PML method fails for periodic
domains in the presence of Wood anomalies. As a remedy we propose in Section 3.2 a new automatic adaption
of the layer size and the spatial discretization within the PML. This leads to quasi infinitely thick layers in the
presence of Wood anomalies. In Section 4 a variational formulation is used to couple the PML to the interior
problem.

In contrast to Elschner et al. [12,11] the electromagnetic field E ¼ ðE1;E2;E3Þ is discretized with higher
order Whitney elements for the ðE1;E2Þ component and Lagrange elements of the same order in the E3 com-
ponent. This allows for the accurate evaluation of Fourier coefficients needed for the coupling to the multi-
layer stack.

The Schwarz algorithm proposed in Section 5 uses transparent boundary conditions at the interfaces. For
the scalar Helmholtz equation Després and Shaidurov proposed to balance the energy fluxes across domain
interfaces [10,27]. This idea of balancing the energy flux was further examined in [1,6,7,9,14]. One may view
this transmission condition as a first order transparent boundary condition. The Schwarz algorithm for Helm-
holtz scattering problems with transparent boundary conditions at the domain interfaces is considered in
[23,28]. In [13] the objective in the construction of local transmission conditions is not to balance the energy
flux, but to optimize the transmission condition to speed up convergence. Local optimized transmission con-
ditions for the time-harmonic Maxwell’s equations are considered in [18,22].

The idea of using transparent boundary conditions as transmission conditions is motivated as follows. Sup-
pose there are two obstacles A and B and an incident wave. One could then calculate the scattered field of each
of the obstacles separately. The scattered field of obstacle A is then added to the incoming field for B, and vice
versa. Iterating this procedure the scattered field is corrected in each step. In each sub-domain only a simplified
scattering problem is solved.
Fig. 1. Layout of an EUV lithography line mask. The structure is periodically repeated in x1 direction and invariant in x3 direction. The
illuminating light is a plane wave with an arbitrary wave vector ~k ¼ ðk1; k2; k3Þ.



A. Schädle et al. / Journal of Computational Physics 226 (2007) 477–493 479
2. Scattering off periodic line masks

Scattering off a periodic line mask is described by a Maxwell scattering problem, with Bloch-periodic
boundary condition in x1 direction and transparent boundary conditions in x2 direction. The dependency
on the x3 component is eliminated.
2.1. Maxwell’s equation

We consider electromagnetic scattering problems governed by the time-harmonic Maxwell’s equations
curll�1ð~xÞcurlEð~xÞ � x2eð~xÞEð~xÞ ¼ 0; ð1aÞ
div eð~xÞEð~xÞ ¼ 0; ð1bÞ
with angular frequency x. The dielectric tensor e and the permeability tensor l are L1. Additionally we as-
sume, that the tensors e and l do not depend on x3, that they are periodic functions in x1 with period a, i.e.
eð~xþ ða; 0; 0ÞÞ ¼ eð~xÞ, lð~xþ ða; 0; 0ÞÞ ¼ lð~xÞ, and that they are constant for x2 > x2;þ and x2 < x2;� with
x2;þ > x2;�. For simplicity the dielectric and the permeability tensors are assumed to be isotropic.

A scattering problem may be defined as follows: Given an incoming electric field Einc satisfying the time-
harmonic Maxwell’s equation (1a) for x2 > x2;þ and x2 < x2;�, compute the total electric field E, which satisfies
(1a) in R3, such that the scattered field Esc ¼ E� Einc defined for x2 > x2;þ and x2 < x2;� meets the radiation
condition given in Section 2.2.

It is possible to restrict the problem onto a two dimensional strip ½0; a� � R provided that the incoming field
is Bloch periodic in x1 [4] and depends harmonically on x3, i.e. Eincðx1 þ a; x2; x3Þ ¼ eEincðx1; x2Þeik1aeik3x3 , whereeEinc is a periodic function in x1 with period a. The important case of an incoming plane wave meets these
restrictions. The total field E as well as the scattered field are then themselves Bloch periodic in x1 and depend
harmonically on x3.

In what follows E, Einc and Esc denote the restriction of the respective field onto the strip ½0; a� � R. This
strip is split into domains X ¼ ½0; a� � ½x2;�; x2;þ�, Xþ ¼ ½0; a� � ½x2;þ;1� and accordingly X�. With the
definitions
curl3E ¼ ðox2
E3 � ik3E2; ik3E1 � ox1

E3; ox1
E2 � ox2

E1ÞT;
div3eE ¼ ox1

eE1 þ ox2
eE2 þ ik3eE3
the scattering problem splits into an interior domain problem
curl3l
�1curl3Eðx1; x2Þ � x2eEðx1; x2Þ ¼ 0 ðx1; x2Þ 2 X;

Eð0; x2Þ � Eða; x2Þeik1a ¼ 0;
ð2Þ
an upper exterior domain problem
curl3l
�1
þ curl3Esc;þðx1; x2Þ � x2eþEsc;þðx1; x2Þ ¼ 0 ðx1; x2Þ 2 Xþ;

Esc;þð0; x2Þ � Esc;þða; x2Þeik1a ¼ 0
ð3Þ
and a lower exterior problem on X� of similar type.
Subproblems (2) and (3) are coupled by the following matching conditions on the boundary x2 ¼ x2;þ:
ðE� ðEsc;þ þ Einc;þÞÞ �~nþ ¼ 0; ð4aÞ
ðl�1curl3 E� ðl�1

þ curl3 Esc;þ þ l�1
þ curl3 Einc;þÞÞ �~nþ ¼ 0; ð4bÞ
where ~nþ ¼ ð0;�1; 0ÞT denotes the unit normal vector. An analogous condition holds on the boundary
x2 ¼ x2;�, coupling the interior and the lower exterior problem.
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2.2. Radiation condition for homogeneous exterior domain problem

The exterior domain problem lacks a radiation condition. As both upper and lower exterior problems can
be treated similarly, we consider the upper exterior domain problem only and drop the ‘‘+’’. Without loss of
generality and to simplify matters, we assume that x2;þ ¼ 0.

Due to the periodicity of Esc expð�ik1x1Þ the field has an expansion into Fourier modes
Escðx1; x2Þ ¼ eþik1x1

X
n2Z

~enðx2Þeix1n2p=a; ð5Þ
with the Fourier coefficients
~enðx2Þ ¼
1

a

Z a

0

e�ik1nEscðn; x2Þe�inðn2p=aÞ dn:
The field Enðx1; x2; x3Þ ¼~enðx2Þ expðiðn2p=aþ k1Þx1Þ expðik3x3Þ is a solution of Maxwell’s equation (1a) for
x2 > 0. Hence inserting En in (1a) yields
Enðx1; x2; x3Þ ¼~en;þeiðn2p=aþk1Þx1 eik2;nx2 eik3x3 þ~en;�eiðn2p=aþk1Þx1 e�ik2;nx2 eik3x3 ;
with k2;n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � ðn2p=aþ k1Þ2 � k2
3

q
, where the branch cut of the square root is along the negative real axis

and k0 ¼ x
ffiffiffiffiffi
le
p

. From this representation it is easily seen that the field can be decomposed into an incoming
and an outgoing part.

We have to distinguish three cases:

(1) Rek2;n > 0, Imk2;n ¼ 0 (propagating mode) Both parts are propagating plane waves. The second part
transports energy in the �x2 direction. We therefore require~en;� ¼ 0. This corresponds to the well known
Sommerfeld radiation condition.

(2) Rek2;n ¼ 0, Imk2;n > 0 (evanescent mode) The first part is evanescent in x2 direction while the second
part increases exponentially. Therefore we again require~en;� ¼ 0.

(3) k2;n ¼ 0 (anomalous mode) In this case both parts are equal and constant in x2 direction. Energy is only
transported in x1 and x3 directions. For the sake of a consistent notation we set~en;� ¼ 0.

Hence the correct radiation boundary condition is~en;� ¼ 0 for all n 2 Z, such that the Fourier coefficients
of the scattered field are given by~en;sc ¼~en;þ. The anomalous case is rare. For example for k1 ¼ 0 and k3 ¼ 0 it
only occurs if a ¼ 2p=ðk0nÞ.

2.3. Ill-posed exterior Dirichlet/Neumann boundary value problems

In our previous paper [23] the DtN operator was used to state the coupling between the different domains.
However the DtN operator may not exist in the periodic setting – the exterior Dirichlet problem is ill-posed in
the presence of anomalous modes.

This may be seen by rewriting Maxwell’s equations separated in Fourier modes. With ~kn ¼ ðk1 þ n2p=
a; k2;n; k3Þ the vectors~en;sc satisfy the algebraic relations
�~kn � ð~kn �~en;scÞ � k2
0~en;sc ¼ 0; ð6aÞ

~en;sc �~kn ¼ 0: ð6bÞ

The first relation stems from Eq. (1a) and the second relation from Eq. (1b). If j 2 Z corresponds to an anom-
alous mode, that is ~kj ¼ ðk1 þ j2p=a; 0; k3Þ, then ~ej;sc ¼ ð0; 1; 0Þ satisfies (6). Hence Esc ¼~en;sc expði~kj �~xÞ is a
solution of the exterior domain problem with zero Dirichlet tangential boundary values. Therefore the Dirich-
let boundary value problem is not uniquely solvable. Furthermore due to the divergence condition (6b) the
vector ~ej;sc must be perpendicular to ~kj. Hence for boundary values with ðd1; 0; d3Þ �~kj 6¼ 0 the problem is
not solvable at all.

By an analogous argument one shows that the Neumann boundary value problem is also ill-posed in the
presence of anomalous modes.
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What is worse, there may exist guided waves,2 and hence the problem is ill-posed; and this ill-posedness is
not related to the radiation condition. Assume l ¼ l0 and eðxÞ ¼ e0 for jx2j>L and eðxÞ ¼ e1 else; pick k1, k3

such that
2 Th
x2e0l0 < k2
1 þ k2

3 < x2e1l0;
define
k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2e1l0 � ðk2

1 þ k2
3Þ

q
; n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1 þ k2
3Þ � x2e0l0

q

and
Eðx1; x2; x3Þ ¼ eEðx1; x2Þeik3x3 ; eEðx1; x2Þ ¼ eik1x1 e3ðx2Þx̂3;
with
e3ðx2Þ ¼
cosðk2x2Þ= cosðk2LÞ for jx2j 6 L;

e�n2ðjx2�LjÞ for jx2j > L:

�

Assume that the width of the layer L is such that
k2 tanðk2LÞ ¼ n2:
This implies that both e3 and ox2
e3 are continuous at the interfaces x2 ¼ �L. Then eEðx1; x2Þ 2 Hðcurl3Þ doesn’t

vanish, is Bloch periodic and satisfies the k3-Maxwell equation with no source term and with the good behav-
ior at infinity. Thus the problem is ill-posed.

In practice however some of EUV line mask materials are dissipative (their permittivity has an imaginary
part) and guided waves do not exist in this case.

2.4. Scattering off an isotropic multilayer stack – the Transfer Matrix method

The Transfer Matrix method which according to [20] was developed by Schuster [26], will be reviewed here
shortly. For more details, the reader is referred to [20,3].

Suppose we are in the situation of Fig. 1. Let us consider only the material stack with m finite layers posi-
tioned at x2;j, j ¼ 0; . . . ;m, with x2;j < x2;jþ1. For j ¼ 1; . . . ;m the layer stack is given by the layer thicknesses
x2;j � x2;j�1 and the material coefficients ej and lj. Additionally for the semi-infinite half-spaces we have e0, l0

and emþ1, lmþ1. Since the Transfer Matrix algorithm is applied to each Fourier mode k1;n separately, we drop

the sub-index n in this section. In each layer local wave vectors ~kj ¼ ðk1; k2;j; k3Þ and k
 
¼ ðk1;�k2;j; k3Þ with

k2;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�jlj � k2

1 � k2
3

q
are defined, such that Rek2;j P 0 and Imk2;j P 0: For a given excitation Einc ¼

Amþ1;inc expði~kmþ1~xÞ þ Bmþ1;inc expðik
 

mþ1~xÞ we want to calculate the reflected field Esc ¼ Amþ1;sc expði~kmþ1~xÞ. From

Snell’s law we obtain that the field in each layer is given by Ej ¼ Aj expði~kj~xÞ þ Bj expðik
 

j~xÞ. In the lower semi-
infinite half space a purely outgoing field is assumed, i.e. A0 ¼ 0. In the layers we have 6 m unknowns – each A or
B has 3 components. In the lower semi-infinite domain the only unknowns are the three components of B0 of the
purely outgoing field. In the upper semi-infinite domain there are six unknowns for the excitation and three for
the reflected field.

These unknowns are determined by the following linear conditions arising from Maxwell’s equations: there
are 1þ 2þ 2mþ 1 equations from the divergence condition. At the m + 1 boundaries of the layers there are
2(m + 1) matching conditions for the tangential components of the Dirichlet data and the same number of
conditions from matching the Neumann data.
Ej�1 �~n ¼ Ej �~n
lj�1curlEj�1 �~n ¼ ljcurl Ej �~n

)
at ~x ¼~xj�1 for j ¼ 1; . . . ; nþ 1:
Here E0 :¼ Einc þ Esc. The missing four conditions are the tangential components of the Dirichlet and Neu-
mann data of the given incoming field.
is was pointed out by one of the referees of the paper. And we are happy to include her/his consideration here.
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These yield a linear system of equations. To avoid large condition numbers due to the complex material
tensors, in each layer ansatz functions with amplitude equal to +1 at the layer midpoint are used.

3. Perfectly matched layer method

In the previous section we discussed the homogenous exterior domain problem and derived transparent
boundary conditions for each Fourier mode. Transforming back from Fourier space, this boundary condition
would be non-local and somehow the anomalous case had to be treated separately. The perfectly matched
layer method is an approximate transparent boundary condition, introducing only small reflections that are
well under control. A major advantage of the PML method is, that it fits in the finite-element framework,
described shortly in Section 4.2, and thus does not introduce ‘‘full’’ blocks in the discretization. The derivation
of the PML closely follows [8]. Opposed to a more standard PML method we fix the damping factor r, but
chose the thickness and the discretization of the layer adaptively.

3.1. General presentation

The PML method is based on a complex continuation of the scattered field. For c ¼ ð1þ irÞ, 0 < r 2 R, we
define the complex continued field
Ec ¼
X
n2Z

~esc;neiðn2paþk1Þx1 eikn;2cx2 eik3x3 : ð7Þ
With the definition
curl3;c Ec ¼
1

c
ox2

Ec;3 � ik3Ec;2; ik3Ec;1 � ox1
Ec;3; ox1

Ec;2 �
1

c
ox2

Ec;1

� �

the field Ec satisfies Maxwell’s equations (3) with curl3 replaced by curl3;c. In the absence of anomalous modes
Ec is evanescent for x2 !1
jEcj 6 e�jx2 C;
with j ¼ minn2ZfImkn;2; rRekn;2g. The idea is to restrict the complex continued exterior domain problem to a
truncated domain Xq ¼ ½0; a� � ½0; q� and to impose a zero Dirichlet boundary condition at x2 ¼ q. In case j is
small or even +0, i.e. if we are ‘‘close’’ to an anomalous mode a special adaptive PML is used, where the thick-
ness q is increased like 1/j and the discretization points are distributed with an exponentially increasing mesh
width guaranteeing an effective discretization, c.f. Section 3.2. Thus the unbounded exterior problem (3) is re-
placed by the truncated exterior domain problem
curl3 l�1
þ curl3 Ec;qðx1; x2Þ � x2eþEc;q ðx1; x2Þ ¼ 0 ðx1; x2Þ 2 Xq;

Ec;qð0; x2Þ � Ec;qða; x2Þeik1a ¼ 0;

Ec;qjx2¼q �~n ¼ 0:

ð8Þ
This modified truncated exterior problem is coupled to the interior problem using the modified matching con-
ditions, c.f. (4)
ðE� ðEc;q þ EincÞÞ �~n ¼ 0; ð9aÞ
ðecurl3 E� ðeþcurl3;c Ec;q þ eþcurl3 EincÞÞ �~n ¼ 0: ð9bÞ
3.2. Automatic adaption of the PML

As discussed in Sections 2.2 and 3.1 the PML method fails in the presence of anomalous modes. For an
anomalous mode the field behaves like expðiðk1x1 þ k3x3ÞÞ and hence a complex continuation in x2 direction
does not make the complex continued field decay exponentially. To obtain an effective transparent boundary
condition the very specific behavior in x2 direction of the field is exploited. We propose a mixed a priori and a
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posteriori refinement strategy of the PML method including the automatic adaption of the layer thickness q.
The algorithm we propose was first published in [31]. We introduce a distance variable n ¼ jx2 � x2;�j and a
tangential variable g ¼ x1 for the exterior domain. We assume the following expansion of the field in the exte-
rior domain
uðg; nÞ �
Z

cðg; aÞeiknðaÞnda; ð10Þ
with ReknðaÞP 0 and ImknðaÞP 0. Hence in n direction the field is a superposition of outgoing or evanescent
plane waves. In the periodic setting such an expansion is explicitly given in (5).

The complex continuation, n 7! cn with c ¼ 1þ ir, gives
kucðg; nÞk �
Z
kcðg; aÞke�jn with j ¼ rRekn þ Imkn: ð11Þ
The PML method only effects the outgoing part with Rekn strictly larger than zero. Field contributions with a
large Rekn component are efficiently damped out. Evanescent field contributions are damped out indepen-
dently of the complex continuation. For a proper approximation of the oscillatory and exponential behavior
a discretization fine enough is needed to resolve the field. In contrast anomalous modes or ‘‘near anomalous’’
modes with kn � 0 are neither evanescent nor damped out efficiently by the PML. Hence they enforce the
usage of a large q but can be well approximated with a relatively coarse discretization in n due to their smooth-
ness in n. These requirements are satisfied using an adaptive discretization. It is useful to think of the complex
continuation as a high-frequency filter. With a growing distance n from the interior coupling boundary higher
frequency contributions are damped out so that the discretization can be coarsened.

For a given tolerance � selected according to the global accuracy requirements we introduce the cut-off
function
jco;�ðnÞ ¼ � lnð�Þ=n:

At any distance n0 > 0 each component in the expansion (11) with j > jco;�ðn0Þ is damped out by a factor less
than the threshold �,
e�jn0 < e�jco;�;�ðn0Þn ¼ elnð�Þ ¼ �:
Algorithm 1.

Adaptive PML method
Require �; r; hint; jmin
Compute Np:w and nmax depending on
hint and finite element order
while (not converged) do

n0 ¼ 0:0; n1 ¼ hint; N ¼ 1;

while (� lnð�Þ=ðnN rÞ < jmin) do
nNþ1 ¼ nN þmaxfhint; 2prnN=ð� lnð�ÞÞ=Np:wg:
if (nNþ1 > 1=�) then

break

else

N ¼ N þ 1
end if

end while

Compute solution u with PML discretization fn0; n1; . . . ; nNg
if kuð�; nN Þk 6 �kuð�Þk then

converged

else if nN > nmax then

break

else

jmin ¼ jmin=2
end if

end while
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Fig. 2. Test problem for adaptive PML discretization. The lower material has an refractive index equal to nsub ¼ 1:5, the upper material
block consists of air (nsup ¼ 1:0). By Snell’s law the field is totally reflected for an incident angle equal to the critical angle

#c ¼ 180 � arcsinð1:0=1:5Þ=p 	 41:81.
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Assuming that this damping is sufficient, we select a discretization which only needs to approximate the lower
frequency parts with j 6 jco;�ðnÞ for n > n0. If a fixed number N p:w of discretization points per generalized wave-
length 2p=j is used, we obtain the following formula for the a priori determination of the local mesh width
hðnÞ ¼ 2pr=jco;�ðnÞ=N p:w. The choice of Np:w depends on the order of the finite element only, but not on the dis-
tance n, as the field is smooth in n-direction. As jco;�ðnÞ ! 1 for n! 0 the local mesh width is zero at n = 0. But as
it is not reasonable to use a finer discretization in the exterior domain than in the interior domain, the local mesh
width is bounded by the minimum mesh width hint of the interior domain discretization on the coupling boundary,
3 He
condit
hðnÞ ¼ maxfhint; 2pr=jco;e;�ðnÞ=Np:wg:

The parameters � and Np:w are chosen to fit to the interior domain discretization quality. The grid
fn0; n1; n2; . . .g is recursively constructed by
nnþ1 ¼ nn þ hðnnÞ:

This way nn grows exponentially with n. To truncate the grid we assume that components in the expansion
with j < jmin can be neglected so that the grid fn0; n1; . . . ; nNg is determined by jco;�;�ðnNÞ < jmin 6

jco;�;�ðnN�1Þ. In the periodic setting there exists such a jmin > 0 in case no anomalous mode is present.
As an a posteriori control we check if the field is indeed sufficiently damped out at nN, kuð�; nN Þk 6 �kuð�Þk.3

Otherwise we recompute the solution with jmin ! jmin=2. Since for an anomalous mode the field is not
damped at all we restrict the maximum nN to nN < p=k0=�. The pseudocode of the algorithm is given in Algo-
rithm 1. There � is a given tolerance, that has to be estimated from the interior discretization, and hint is the
mesh-width of the boundary. The damping factor r is fixed; r = 1 is a good choice.

3.3. Validation on numerical experiments

To demonstrate the performance of the adaptive PML algorithm we compute the reflection of a plane wave
at a material jump, c.f. Fig. 2. The angle of incidence varies from # ¼ 20� to # ¼ 60�. The incoming field is
rotated along the x3 axis by an angle of 45�, so that the incidence is twofold oblique (conical). Hence the unit
direction of the incoming field is equal to ðcos 45� sin#; cos#; sin 45� sin#Þ. The interior domain has a size of
1:5� 1 in wavelength scales. To measure the error the field energy in the interior domain is computed and
compared to the analytic value. In Fig. 3 the error is plotted for different refinement levels of the interior
domain. The ‘‘+’’ line corresponds to the finest level. In Fig. 4 the automatically adapted thickness of the
PML is plotted (left) and the number of discretization points N in n direction (right). As expected a huge layer
is used at the critical angle, whereas the total number of discretization points remains moderate. As can be
seen in Fig. 3 the maximum error appears at the critical angle. From that one may suspect a failure of the
automatic PML adaption. But a closer analysis reveals that the chosen discretization in the PML layer is suf-
ficient as can be seen from Table 1. There the thickness of the perfectly matched layer is fixed and the interior
domain further refined. This way we observe convergence to the true solution. But the convergence rate is
halved at the critical angle. Hence the maximum error at the critical angle comes from an insufficient interior
re we assume homogenous Neumann boundary conditions for the truncation of the PML layer. If homogenous Dirichlet boundary
ions are chosen for the truncation of the PML layer, the sufficient damping of the Neumann data may be checked instead.



20 30 40 50 60
10

−7

10
−5

10
−3

10
−1

angle of incidence

|F
E

−F
E

ex
|

41 41.5 42 42.5 43
10

−7

10
−5

10
−3

10
−1

angle of incidence

|F
E

−F
E

ex
|
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discretization. We conjecture that this is due to a dispersion effect. Since the wave is traveling along the x1

direction it reenters the periodic domain leading to large ‘‘path length’’.

4. Variational form

4.1. Derivation of the variational form

The coupled problem given by (8), (2) and (9) can be casted into a variational problem on the Sobolev space
H 0;qðcurl3;X [ XqÞ of Hðcurl3Þ fields with generalized zero Dirichlet values at x2 ¼ q.

For a given test function U 2 H 0;qðcurl3;X [ XqÞ the following identity holds true:
Table 1
Convergence of field energy at critical angle of incidence

Step DE DE 0

0 0.359850 0.335129
1 0.159358 0.166207
2 0.048779 0.049502
3 0.012911 0.012912
4 0.003274 0.003266
5 0.000205 0.000820
6 0.000206 0.000205
7 0.000051 0.000051

The first column corresponds to the interior mesh refinement step. The relative error of the electric field energy in the interior domain is
given in column two, DE ¼ jkEexk2

L2 � kEhk2
L2 j=jkEexk2

L2 : In column three the relative error of the magnetic field energy
DE0 ¼ jkcurlEexk2

L2 � kcurlEhk2
L2 j=jkcurlEexk is given. For fixed PML thickness the solution converges as the interior mesh is refined.
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c
Z

Xq

U � curl3;c l
�1curl3;c Ec;

c
Z

Xq

curl3;c U � l�1curl3;c Ec �
Z

x2¼0

U � l�1curl3 Esc �~n;
ð12Þ
where Ecðx1; x2; x3Þ ¼ Escðx1; cx2; x3Þ, c.f. (7). We first proof this identity for c 2 R n f0g. Using the non-euclid-
ian coordinate change
T�1 : ðx1; x2; x3Þ 7! ðx1; c
�1x2; x3Þ
and applying the transformation rules for differential forms, see [29], one gets
Z
Xcq

U
 � curl3 l�1curl3 Esc ¼
Z

Xq

U
 � curl3 l�1

 curl3 E
; ð13aÞZ

Xcq

curl3 U
 � l�1curl3 Esc ¼
Z

Xq

curl3 U
 � l�1

 curl3 E
; ð13bÞ
with
l
 ¼ jJ jJ�1lJ�t; ð14aÞ
E
ðx1; x2; x3Þ ¼ J tEscðx1; cx2; x3Þ; ð14bÞ
U
ðx1; x2; x3Þ ¼ J tUðx1; x2; x3Þ ¼ J tU
ðx1; cx2; x3Þ: ð14cÞ
J ¼ diagð1; c; 1Þ is the constant Jacobian of T. Note that U
; E
 are the pulled back fields to U* and Esc in the
sense of differential form calculus.

We have
c
Z

Xq

U � curl3;c l
�1curl3;c Ec ¼

Z
Xq

U
 � curl3 l�1

 curl3 E
; ð15aÞ

c
Z

Xq

curl3;c U � l�1curl3;c Ec ¼
Z

Xq

curl3 U
 � l�1

 curl3 E
; ð15bÞ
which is verified by inserting (14) and using curl3;c ¼ jJ j�1Jcurl3 J t.
On the other hand integration by parts yields
Z

Xq

U
 � curl3 l�1

 curl3 E
 ¼

Z
Xq

curl3 U
 � l�1

 curl3 E
 �

Z
x2¼0

U
 � ðl�1

 curl3 E
 �~nÞ ð16Þ
and a respective equation for Esc, l, and U* with the domain of integration Xcq. These together with equations
in (13) give
Z

x2¼0

U
 � ðl�1

 curl3 E
 �~nÞ ¼

Z
x2¼0

U
 � ðl�1curl3 Esc �~nÞ: ð17Þ
Using that Ec ¼ J�tE
 and using that the tangential components of U
 are equal to U, one derives from (15)
and (17) the desired identity (12) for real c. Since each term is a holomorphic function in c the identity (12)
holds true for c 2 C n f0g.

The coupled problem given by (8), (2) and (9) in weak form is given by
Z
X

curl3 U � l�1curl3 E� x2U � eEþ c
Z

Xq

curl3;c U � l�1curl3;c Ec � x2U � eEc

¼ �
Z

x2¼0

U � l�1ðcurl3 E� curl3 EscÞ �~n: ð18Þ
Due to the Neumann coupling condition curl3 E�~n ¼ curl3 Esc �~nþ curl3 Einc �~n the boundary term is equal
to
R

x2¼0
U � l�1curl3 Einc �~n. This is not yet the basis for a Galerkin ansatz in H 0;qðcurl3;X [ XqÞ as there is a

jump of the Dirichlet data across the boundary x2 ¼ 0, precisely Ec þ Einc ¼ Ejx2¼0. Let
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PðEinc �~nÞ 2 H 0;qðcurl3;XqÞ denote an extension of a field with tangential Dirichlet data equal to Einc �~n at
x2 ¼ 0 to H 0;qðcurl3;XqÞ and add this to Ec to obtain
Z

X
curl3 U � l�1curl3 E� x2U � eEþ c

Z
Xq

curl3;c U � l�1curl3;c ðEc þPðEinc �~nÞÞ � x2U � eðEc þPðEinc �~nÞÞ

¼ �
Z

x2¼0

U � l�1ðcurl3 Einc �~nÞ þ c
Z

Xq

curl3;c U � l�1curl3;c PðEinc �~nÞ � x2U � ePðEinc �~nÞ: ð19Þ
This motivates the definition of the composed field u 2 H 0;qðcurl3;X [ XqÞ by ujX ¼ E and
ujXq
¼ Esc þPðEinc �~nÞ and of the following bilinear form:
aðU; uÞ :¼ aXðUjX; ujXÞ þ aXqðUjXq
; ujXq

Þ; ð20Þ
with
aXðU; uÞ :¼
Z

X
curl3 U � l�1curl3 u� x2U � eu; ð21Þ

aXqðU; uÞ :¼ c
Z

Xq

curl3;c U � l�1curl3;c u� x2U � eu: ð22Þ
Defining
bCðU;WÞ :¼
Z

C
U � l�1W ð23Þ
we end up with the variational problem: find u 2 H 0;qðcurl3;X [ XqÞ such that for all U 2 H 0;qðcurl3;X [ XqÞ
aðU; uÞ ¼ aXqðU;PðEinc �~nÞÞ � bCðU; curl3 Einc �~nÞ: ð24Þ
Here we have avoided the definition of a DtN-operator. The total field is calculated as the solution of a cou-
pled system (computational domain coupled to the PML), where the Dirichlet and Neumann data enter the
equation on the ‘‘right-hand side’’. If u is a solution of Maxwell’s equations (1), the integration by parts iden-
tity can be rewritten using these bilinear forms as
aXðU; uÞ � bðU;�curl3 u�~nÞ ¼ 0: ð25Þ
This formula will be useful to represent the Neumann data. Note that in (25) ~n is the ‘‘inward’’ normal with
respect to X.
4.2. Finite element discretization

To discretize the variational problem (24) we use vectorial finite elements on a triangular mesh in the inte-
rior domain and on a quadrilateral mesh in the PML. The three sub-meshes – lower PML mesh, interior
domain mesh and upper PML mesh – fit non-overlapping. In the PML we use a rectangular mesh
½0; x1;2; . . . ; a� � ½x2;þ; x2;þ þ n1; . . . ; x2;þ þ nN � where n1; . . . ; nN are determined as described in Section 3.2. Since
the Sobolev space H 0;qðcurl3;X [ XqÞ is isomorphic to H 0;qðcurl2D;X [ XqÞ � H 1

0;qðX [ XqÞ with the two dimen-
sional curl operator curl2Dðu1; u2Þ ¼ ox1

u2 � ox2
u1 we use higher order Whitney elements to discretize the first

and second component of the electric field and standard Lagrange elements for the third field component of
the same order.

Bloch periodicity is enforced by a multiplication of basis functions associated with one of two correspond-
ing periodic boundaries of the domain by the Bloch factor, c.f. [4]. An interior edge element function remains
unchanged, c.f. Fig. 5 (left). The support of a basis function associated with a periodic edge on the boundary
consists of two triangles, c.f. Fig. 5 (right). The restriction of the basis function to the left triangle is defined as
the standard shape function, whereas the shape-function on the right triangle is multiplied by the Bloch factor
expðik1aÞ. The construction of Bloch periodic Lagrange elements is similar.



Fig. 5. First order edge elements on a simple grid. In the interior the tangential component is continuous across element boundaries. At
the Bloch periodic boundary there is a phase shift.

488 A. Schädle et al. / Journal of Computational Physics 226 (2007) 477–493
5. Domain decomposition method

The idea for the Schwarz algorithm with transparent boundary conditions at the interfaces is to calculate
the solution on every sub-domain separately using transparent boundary conditions and iteratively add the
scattered field of each sub-domain to the incoming field for the neighboring sub-domains. The presentation
here is restricted to the multiplicative (Gauß-Seidel) Schwarz-algorithm.

In its general form the domain-decomposition algorithm is given in (26). There En
j denotes the nth iterate on

sub-domain Xj. Xj;q;i is the PML domain to Xj at the interface to Xi; Xj;q denotes the PML domain to Xj at the
interface to the exterior, c.f. Fig. 6. The sub-domains are arranged linearly.
Fig. 6.
sub-do
set E0
j ¼ 0 for all j

while not converged

for all sub-domains j

find En
j such that

ajðU;En
j Þ ¼ aXj;qðU;PðEinc �~nÞÞ � bCjðU; curl3 Einc �~nÞ

þ aXj;q;j�1
ðU;PðEn

j�1 �~nÞÞ � bCj;j�1
ðU; curl3 En

j�1 �~nÞ
þ aXj;q;jþ1

ðU;PðEn�1
jþ1 �~nÞÞ � bCj;jþ1

ðU; curl3 En�1
jþ1 �~nÞ

8U 2 H 0;qðcurl3;Xj [ Xj;q[i2fj�1;jþ1gXj;q;iÞ:

ð26Þ
This algorithm requires the evaluation of Neumann data curl3Ei �~n along the boundary. Each sub-domain
has only two well separated boundaries neglecting the periodic boundary and at most two neighboring do-
mains. Inserting an additional post-processing step, the Neumann-data can be evaluated weakly.
Schematic sketch of the various domains and PMLs. Left: The computational domain X is split in three sub-domains. Right: The
main X1, with its two PMLs. Top and lower boundary are periodic boundaries.
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set E0
j ¼ 0 for all j

while not converged

for all sub-domains j

find En
j such that

ajðU;En
j Þ ¼ þaXj;qðU;PðEinc �~nÞÞ � bCjðU; curl3 Einc �~nÞ

þ aXj;q;j�1
ðU;PðEn

j�1 �~nÞÞ � bCj;j�1
ðU; curl3 En

j�1 �~nÞ
þ aXj;q;jþ1

ðU;PðEn�1
jþ1 �~nÞÞ � bCj;jþ1

ðU; curl3 En�1
jþ1 �~nÞ

8U 2 H 0;qðcurl3;Xj [ Xj;q[i2fj�1;jþ1gXj;q;iÞ;
for all sub-domains j

bCj;jþ1
ðU; curl3 En

j �~nÞ þ bCj;j�1
ðU; curl3 En

j �~nÞ
þ bCjðU; curl3 Einc �~nÞ ¼ �aXjðU;En

j Þ

ð27Þ
In order to distinguish bCj;j�1
ðU; curl3 En

j �~nÞ from bCj;jþ1
ðU; curl3 En

j �~nÞ, it is required that there are no test
functions that have a support in elements adjacent to Cj;jþ1 and Cj;j�1 simultaneously.

5.1. Schwarz algorithm for EUV

For the special application – scattering off an EUV-line mask – one can make use of the ‘‘simple’’ geometry
of the multilayer stack that serves as a mirror employing the Transfer Matrix algorithm of Section 2.4. A sim-
ple situation is depicted in Fig. 7. The upper domain contains the mask line whereas the lower domain consists
of the multilayer stack and the lower substrate block. Instead of solving Maxwell’s equations by the finite ele-
ment method in the multilayer stack, the incoming field is Fourier transformed and for each Fourier mode the
Transfer Matrix algorithm is used to calculate the scattered field. This can even be simplified. If the tangential
component of each Fourier-mode vector field is written as the linear combination of two linear independent
polarizations, it is sufficient to compute the reflection coefficients of the multilayer stack for each mode and
each polarization only once. The number of Fourier mode ranges from nmin to nmax. To determine these,
we set kmax ¼ 0:1 � 2p=hmax, where hmax is the maximum segment size of a finite element at the boundary. Then
nmax is the greatest integer such that k1 þ nmax2p=a < kmax, i.e. and nmin is the greatest integer, such that
kx � nmin2p=a > �kmax.
2,0

2,0

computational domain

material 0

material 0

outgoing wave reflected wave

multilayer stack

substrate

Decomposition of the problem into two infinite sub-domains. The scattering problem is solved by the Finite Element Method in
per domain and quasi-analytically in the lower domain.
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6. Numerical examples

Two numerical examples are presented below. For one further example see [30]. In [21] the domain decom-
position algorithm described above is applied to study the influence of shape and material parameters of EUV
masks.

6.1. An academic example

The simple geometry of this example is depicted in Fig. 8. It consists of three domains X1 and X2, each with
a quadrilateral material inhomogeneity and X3 a layer stack of four layers below X2. The period is a = 1. The
different shadings correspond to different materials as indicated. The permeability is equal to +1 everywhere.
The permittivity is given by e1 ¼ 1:01, e2 ¼ 1:52, e3 ¼ 1:03, e4 ¼ 1:54, e5 ¼ 1:55, e6 ¼ 1:06, e7 ¼ 1:57, e8 ¼ 1:08.
The semi-infinite top and lower strips, with refraction indices e9 ¼ 1 and e0 ¼ 1 are not shown. These are com-
pletely modeled by the PML method. The incoming field is a plane waves with wave vector ~kinc ¼ ð1;�2; 1Þ
and wave length, k ¼ 0:84. The strength is~sinc ¼ ð1; 1; 1Þ � ~kinc=kð1; 1; 1Þ � ~kinck.

In the experiment the relative error is measured against the discrete solution obtained by solving the scat-
tering problem on the whole domain. In solving the scattering problem on the whole domain, the PML is cho-
sen adaptively. These PML parameters are then fixed and used for all sub-domains. Three cases are
distinguished.

(1) Schwarz algorithm with two domains (D2): One domain is X1 and the second domain is the union of X2

and X3. Thus the layers are discretized by finite elements. In the convergence plot of Fig. 8 this corre-
sponds to the dark gray lines.

(2) Schwarz algorithm with two domains (D2-EUV): One domain is X1, the second domain is X2. X3 the
layer stack is treated analytically and is like a boundary condition for X2. That is, if the subproblem
on X2 is solved we iterate internally between X2 and X3 and stop if the error is below 10�9 or after at
most 100 iterations. In the domain decomposition algorithm only the number of iterations between
X1 and X2 is counted. In the convergence plot of Fig. 8 this corresponds to the black lines.

(3) Schwarz algorithm with three domains (D3): We are using a multiplicative Schwarz algorithm with three
sub-domains. Within one ‘‘iteration cycle’’, we first solve for E1, then for E2 and finally for E3. On each
sub-domain the finite element method is used. In the convergence plot of Fig. 8 this corresponds to the
light gray lines.
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Fig. 8. Material distribution (left) and magnitude of the electric field (middle) for a simple test problem. Convergence plot (right) for
~kinc ¼ ð1;�2; 1Þ, k ¼ 0:84 and different refinement levels.
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For these three cases the error versus the number of Schwarz iteration cycles is shown in Fig. 8 (right). The
experiment is performed for three different refinement levels, where ‘‘ · ’’ corresponds to the coarsest level with
6496 degrees of freedom on the whole domain including the PML; sub-domain X1 has 3328, X2 has 2752, X3

has 2552 and X2 [ X3 4352 degrees of freedom including the PML in the first iteration loop.
The next finer level labeled with ‘‘*’’ is obtained by one uniform refinement of the initial grid and has 24,384

degrees of freedom. The finest level (92,032 degrees of freedom) labeled with ‘‘h’’ is obtained by two uniform
refinements of the initial grid. In each case second order finite elements are used. In case (D2-EUV) the error
saturates at a level that clearly depends on the refinement of the interior grid. This behavior can be expected as
the number of Fourier coefficients that are taken into account to couple the layer-stack analytically in the Sch-
warz iteration is inverse proportional to the mesh-width. In case (D2) and (D3) the error saturates at 1e�14,
which is close to machine precision. This surprisingly good convergence behavior will be further analyzed in a
subsequent paper. The geometry, the permittivity and the angle of incidence all influence the convergence.

6.2. Real life EUV mask

A schematic sketch of a more realistic EUV line mask is shown in Fig. 9. There only four out of ten MoSi
double layers are shown. The periodicity a is 40 nm. The line made of silicon (Si) and the chromium absorber
(Cr) have a width of 20 nm and a height of 15 nm. The first silicon layer’s height is 10 nm. Each molybdenum
layer (Mo) has a height of 6 nm and the subsequent silicon layers have a height of 8 nm. The wavelength is
14 nm. The permeability is 1.0 everywhere. The permittivities are eMo ¼ 1:69þ 0:016i, eSi ¼ 1:21þ 0:002i,
eCr ¼ 1:43þ 0:24i and eAir ¼ 1:0.

Starting from a coarse mesh the grid is pre-refined to have at least 3, 4, 5, 6, 7, 8, 9, 16 and 20 points per
wavelength locally. The solution obtained with 20 points per wavelength is taken as a reference solution to
measure the error.

We use a domain decomposition algorithm and decompose the mask into X1 (line, absorber, air) and X2

(multilayer stack). The multilayer stack is treated analytically as described in Section 5.1. Additionally we
are using a damping factor of 0.66 in the domain decomposition algorithm to speed up convergence.

The PML is chosen adaptively as described in Section 3.2.
Fig. 9 (middle) shows the error versus the number of degrees of freedom in the finite element grid including

the PML. To obtain the solid line, the multilayer stack is discretized using finite elements. Clearly, if the mul-
tilayer stack is not discretized, but treated analytically and coupled to X1 in the domain-decomposition algo-
rithm, the number of degrees of freedom is reduced drastically. The above calculations where performed on an
AMD Opteron PC with 32 GB of RAM. The arising linear systems are solved with the sparse direct solver
PARDISO [24,25]; PARDISO shows a nice linear dependency between the size of the problem and the
Fig. 9. Left: Sketch of an EUV line mask. Middle: Error versus the number of degrees of freedom in finite element mesh. The dashed error
curve is obtained using the domain decomposition algorithm, decomposing the computational domain in two sub-domains (the line and
the multilayer stack) and treating the multilayer stack separately. The solid error curve is obtained discretizing the whole computational
domain. Right: Total memory required in (kb) versus the number of degrees of freedom. The sparse direct solver PARDISO shows a nice
linear dependency between problem size and memory complexity.
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memory required. This reduction of the number of degrees of freedom due to the domain decomposition
approach, allows to compute realistic masks on standard 32-bit computers.
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